Forecast-based attribution of a winter heatwave within the limit of predictability

Author:

Leach Nicholas J.ORCID,Weisheimer AntjeORCID,Allen Myles R.ORCID,Palmer TimORCID

Abstract

Attribution of extreme weather events has expanded rapidly as a field over the past decade. However, deficiencies in climate model representation of key dynamical drivers of extreme events have led to some concerns over the robustness of climate model–based attribution studies. It has also been suggested that the unconditioned risk-based approach to event attribution may result in false negative results due to dynamical noise overwhelming any climate change signal. The “storyline” attribution framework, in which the impact of climate change on individual drivers of an extreme event is examined, aims to mitigate these concerns. Here we propose a methodology for attribution of extreme weather events using the operational European Centre for Medium-Range Weather Forecasts (ECMWF) medium-range forecast model that successfully predicted the event. The use of a successful forecast ensures not only that the model is able to accurately represent the event in question, but also that the analysis is unequivocally an attribution of this specific event, rather than a mixture of multiple different events that share some characteristic. Since this attribution methodology is conditioned on the component of the event that was predictable at forecast initialization, we show how adjusting the lead time of the forecast can flexibly set the level of conditioning desired. This flexible adjustment of the conditioning allows us to synthesize between a storyline (highly conditioned) and a risk-based (relatively unconditioned) approach. We demonstrate this forecast-based methodology through a partial attribution of the direct radiative effect of increased CO2 concentrations on the exceptional European winter heatwave of February 2019.

Funder

RCUK | Natural Environment Research Council

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Reference66 articles.

1. Liability for climate change

2. Explaining extreme events of 2011 from a climate perspective;Peterson;Bull. Am. Meteorol. Soc.,2012

3. Attributing weather extremes to ‘climate change’

4. Natural disasters: Communicating linkages between extreme events and climate change;Hassol;WMO Bull.,2016

5. Explaining extreme events of 2019 from a climate perspective;Herring;Bull. Am. Meteorol. Soc.,2021

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3