Geometric control of topological dynamics in a singing saw

Author:

Shankar Suraj1ORCID,Bryde Petur2ORCID,Mahadevan L.123ORCID

Affiliation:

1. Department of Physics, Harvard University, Cambridge, MA 02138

2. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138

3. Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138

Abstract

Significance The ability to sustain notes or vibrations underlies the design of most acoustic devices, ranging from musical instruments to nanomechanical resonators. Inspired by the singing saw that acquires its musical quality from its blade being unusually bent, we ask how geometry can be used to trap and insulate acoustic modes from dissipative decay in a continuum elastic medium. By using experiments and theoretical and numerical analysis, we demonstrate that spatially varying curvature in a thin shell can localize topologically protected modes at inflection lines, akin to exotic edge states in topological insulators. A key feature is the ability to geometrically control both spatial localization and the dynamics of oscillations in thin shells. Our work uncovers an unusual mechanism for designing robust, yet reconfigurable, high-quality resonators across scales.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Reference52 articles.

1. N. H. Fletcher, T. Rossing, The Physics of Musical Instruments (Springer New York, 2008).

2. G. Johnson, Saw, Musical (Grove Music Online, Oxford University Press, 2001).

3. J. J. Leonard, J. Graebner, Scratch My Back: A Pictoral History of the Musical Saw and How to Play It. (Kaleidoscope Press), ed. 1 (1989).

4. Vibration of a segment of a non-circular cylindrical shell: The “musical saw” problem

5. The musical saw‐operational features and simple dynamical theory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Geometric localization of waves on thin elastic structures;Physical Review E;2024-03-05

2. Odd elasticity and topological waves in active surfaces;Physical Review E;2024-02-28

3. Localization in musical steelpans;Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences;2023-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3