Movement-dependent electrical stimulation for volitional strengthening of cortical connections in behaving monkeys

Author:

Moorjani Samira123ORCID,Walvekar Sarita12,Fetz Eberhard E.123ORCID,Perlmutter Steve I.123ORCID

Affiliation:

1. Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195

2. Washington National Primate Research Center, University of Washington, Seattle, WA 98195

3. Center for Neurotechnology, University of Washington, Seattle, WA 98195

Abstract

Correlated activity of neurons can lead to long-term strengthening or weakening of the connections between them. In addition, the behavioral context, imparted by execution of physical movements or the presence of a reward, can modulate the plasticity induced by Hebbian mechanisms. In the present study, we have combined behavior and induced neuronal correlations to strengthen connections in the motor cortex of adult behaving monkeys. Correlated activity was induced using an electrical-conditioning protocol in which stimuli gated by voluntary movements were used to produce coactivation of neurons at motor-cortical sites involved in those movements. Delivery of movement-dependent stimulation resulted in small increases in the strength of associated cortical connections immediately after conditioning. Remarkably, when paired with further repetition of the movements that gated the conditioning stimuli, there were substantially larger gains in the strength of cortical connections, which occurred in a use-dependent manner, without delivery of additional conditioning stimulation. In the absence of such movements, little change was observed in the strength of motor-cortical connections. Performance of the motor behavior in the absence of conditioning also did not produce any changes in connectivity. Our results show that combining movement-gated stimulation with further natural use of the “conditioned” pathways after stimulation ends can produce use-dependent strengthening of connections in adult primates, highlighting an important role for behavior in cortical plasticity. Our data also provide strong support for combining movement-gated stimulation with use-dependent physical rehabilitation for strengthening connections weakened by a stroke or spinal cord injury.

Funder

HHS | National Institutes of Health

National Science Foundation Center for Neurotechnology

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3