Achieving complete electrooxidation of ethanol by single atomic Rh decoration of Pt nanocubes

Author:

Chang Qiaowan12ORCID,Hong Youngmin3,Lee Hye Jin3,Lee Ji Hoon24ORCID,Ologunagba Damilola5,Liang Zhixiu6,Kim Jeonghyeon3,Kim Mi Ji3,Hong Jong Wook7ORCID,Song Liang6,Kattel Shyam5ORCID,Chen Zheng18ORCID,Chen Jingguang G.29,Choi Sang-Il310ORCID

Affiliation:

1. Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093

2. Department of Chemical Engineering, Columbia University, New York, NY 10027

3. Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Republic of Korea

4. School of Materials Science and Engineering, Kyungpook National University, Daegu 41566, Republic of Korea

5. Department of Physics, Florida A&M University, Tallahassee, FL 32307

6. Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973

7. Department of Chemistry, University of Ulsan, Ulsan 44776, Republic of Korea

8. Program of Chemical Engineering, University of California San Diego, La Jolla, CA 92093

9. Chemistry Division, Brookhaven National Laboratory, Upton, NY 11973

10. Department of Hydrogen and Renewable Energy, Kyungpook National University, Daegu 41566, Republic of Korea

Abstract

Significance Direct ethanol fuel cells are attracting growing attention as portable power sources due to their advantages such as higher mass-energy density than hydrogen and less toxicity than methanol. However, it is challenging to achieve the complete electrooxidation to generate 12 electrons per ethanol, resulting in a low fuel utilization efficiency. This manuscript reports the complete ethanol electrooxidation by engineering efficient catalysts via single-atom modification. The combined electrochemical measurements, in situ characterization, and density functional theory calculations unravel synergistic effects of single Rh atoms and Pt nanocubes and identify reaction pathways leading to the selective C–C bond cleavage to oxidize ethanol to CO 2 . This study provides a unique single-atom approach to tune the activity and selectivity toward complicated electrocatalytic reactions.

Funder

ACS Petroleum Research Fund

National Research Foundation of Korea

DOE | SC | Basic Energy Sciences

DOE | LDRD | Brookhaven National Laboratory

National Science Foundation

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3