Synthesis of methanediol [CH2(OH)2]: The simplest geminal diol

Author:

Zhu Cheng,Kleimeier N. FabianORCID,Turner Andrew M.,Singh Santosh K.,Fortenberry Ryan C.ORCID,Kaiser Ralf I.ORCID

Abstract

Geminal diols—organic molecules carrying two hydroxyl groups at the same carbon atom—have been recognized as key reactive intermediates by the physical (organic) chemistry and atmospheric science communities as fundamental transients in the aerosol cycle and in the atmospheric ozonolysis reaction sequence. Anticipating short lifetimes and their tendency to fragment to water plus the aldehyde or ketone, free geminal diols represent one of the most elusive classes of organic reactive intermediates. Here, we afford an exceptional glance into the preparation of the previously elusive methanediol [CH2(OH)2] transient—the simplest geminal diol—via energetic processing of low-temperature methanol–oxygen ices. Methanediol was identified in the gas phase upon sublimation via isomer-selective photoionization reflectron time-of-flight mass spectrometry combined with isotopic substitution studies. Electronic structure calculations reveal that methanediol is formed via excited state dynamics through insertion of electronically excited atomic oxygen into a carbon–hydrogen bond of the methyl group of methanol followed by stabilization in the icy matrix. The first preparation and detection of methanediol demonstrates its gas-phase stability as supported by a significant barrier hindering unimolecular decomposition to formaldehyde and water. These findings advance our perception of the fundamental chemistry and chemical bonding of geminal diols and signify their role as an efficient sink of aldehydes and ketones in atmospheric environments eventually coupling the atmospheric chemistry of geminal diols and Criegee intermediates.

Funder

National Science Foundation

Deutsche Forschungsgemeinschaft

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3