Phenotype-Based Threat Assessment

Author:

Yang Jing1,Eslami Mohammed2ORCID,Chen Yi-Pei2,Das Mayukh1,Zhang Dongmei1ORCID,Chen Shaorong1,Roberts Alexandria-Jade1,Weston Mark2,Volkova Angelina2,Faghihi Kasra2,Moore Robbie K.1ORCID,Alaniz Robert C.1,Wattam Alice R.3ORCID,Dickerman Allan3,Cucinell Clark3ORCID,Kendziorski Jarred1,Coburn Sean1,Paterson Holly1,Obanor Osahon1,Maples Jason1ORCID,Servetas Stephanie4,Dootz Jennifer4,Qin Qing-Ming1,Samuel James E.1ORCID,Han Arum56,van Schaik Erin J.1ORCID,de Figueiredo Paul17

Affiliation:

1. Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX 77807

2. Netrias, LLC, Cambridge, MA 02142

3. Biocomplexity Institute and Initiative, University of Virginia, Charlottesville, VA 22904

4. Complex Microbial Systems Group, Biomaterials and Biosystems Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899

5. Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843

6. Department of Biomedical Engineering, Texas A&M University, College Station,TX 77843

7. Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843

Abstract

SignificanceAssessing the threat posed by bacterial samples is fundamentally important to safeguarding human health. Whole-genome sequence analysis of bacteria provides a route to achieving this goal. However, this approach is fundamentally constrained by the scope, the diversity, and our understanding of the bacterial genome sequences that are available for devising threat assessment schemes. For example, genome-based strategies offer limited utility for assessing the threat associated with pathogens that exploit novel virulence mechanisms or are recently emergent. To address these limitations, we developed PathEngine, a machine learning strategy that features the use of phenotypic hallmarks of pathogenesis to assess pathogenic threat. PathEngine successfully classified potential pathogenic threats with high accuracy and thereby establishes a phenotype-based, sequence-independent pipeline for threat assessment.

Funder

DOD | Defense Advanced Research Projects Agency

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3