Dissection of brain-wide resting-state and functional somatosensory circuits by fMRI with optogenetic silencing

Author:

Jung Won Beom1,Jiang Haiyan12,Lee Soohyun3ORCID,Kim Seong-Gi124ORCID

Affiliation:

1. Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon 16419, Republic of Korea

2. Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea

3. Unit on Functional Neural Circuits, NIH, Bethesda, MD 20892

4. Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea

Abstract

Significance Functional MRI (fMRI) has led to tremendous advancements in brain science by allowing noninvasive mapping of functional regions in response to various stimuli and noninvasive mapping of resting-state functional connectivity. Both evoked and resting-state functional networks contain multiple brain regions that are hierarchically yet reciprocally connected. Therefore, it is critical to determine the relative contributions of different circuits to fMRI findings to better understand brain functions and resting-state connectivity. Here, we adopted local silencing with optogenetic stimulation to suppress downstream networks and successfully dissected fMRI responses at the circuit level. This fMRI approach opens an avenue for understanding brain-wide, population-based neural circuits, allowing investigations of functional reorganization caused by neuropathological modifications and learning in individual animals.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3