In operando visualization of redox flow battery in membrane-free microfluidic platform

Author:

Park Hyungjoo1ORCID,Kwon Giyun23,Lee Hyomin4ORCID,Lee Kyunam5,Park Soo Young5,Kwon Ji Eon6ORCID,Kang Kisuk278,Kim Sung Jae1910ORCID

Affiliation:

1. Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Republic of Korea

2. Department of Material Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea

3. Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea

4. Department of Chemical & Biological Engineering, Jeju National University, Jeju 63243, Republic of Korea

5. Center for Supramolecular Optoelectronic Materials (CSOM), Seoul National University, Seoul 08826, Korea

6. Functional Composite Materials Research Center, Korea Institute of Science and Technology (KIST), Jeonbuk 55324, Republic of Korea

7. Center for Nanoparticle Research at Institute for Basic Science (IBS), Seoul National University, Seoul 08826, Republic of Korea

8. School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea

9. SOFT Foundry Institute, Seoul National University, Seoul 08826, Republic of Korea

10. Inter-University Semiconductor Research Center, Seoul National University, Seoul 08826, Republic of Korea

Abstract

Significance The current study investigates fundamentals of electrochemical reactions using the membrane-free redox flow battery (RFB) platform with a laminar strategy and colorimetry of multiredox organic molecules. Taking advantage of unique color changes of electrolytes depending on the state of charge, we analyze the electrochemical kinetics of the RFB system in terms of charge and mass transfer. It is verified that a balanced rate of charge and mass transfer significantly affects the battery performance. Furthermore, a classical physicochemical hydrodynamic equation is adopted for scaling analysis of the depletion region deteriorating battery performance. We successfully integrate analytical, numerical, and experimental data for elucidating the depletion region. Based on these fundamental studies, finally, a favorable design is suggested for performance enhancement.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3