Evolutionary isolation of ryanodine receptor isoform 1 for muscle-based thermogenesis in mammals

Author:

Singh Daniel P.1ORCID,Pearce Luke1ORCID,Choi Rocky H.1,Meizoso-Huesca Aldo1,Wette Stefan G.2ORCID,Scott John W.34,Lamboley Cedric R.1,Murphy Robyn M.2,Launikonis Bradley S.1ORCID

Affiliation:

1. School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia

2. Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC 3083, Australia

3. Drug Discovery Biology Unit, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia

4. The Florey Institute of Neuroscience and Mental Health, Melbourne, VIC 3052, Australia

Abstract

Resting skeletal muscle generates heat for endothermy in mammals but not amphibians, while both use the same Ca 2+ -handling proteins and membrane structures to conduct excitation–contraction coupling apart from having different ryanodine receptor (RyR) isoforms for Ca 2+ release. The sarcoplasmic reticulum (SR) generates heat following Adenosine triphosphate (ATP) hydrolysis at the Ca 2+ pump, which is amplified by increasing RyR1 Ca 2+ leak in mammals, subsequently increasing cytoplasmic [Ca 2+ ] ([Ca 2+ ] cyto ). For thermogenesis to be functional, rising [Ca 2+ ] cyto must not interfere with cytoplasmic effectors of the sympathetic nervous system (SNS) that likely increase RyR1 Ca 2+ leak; nor should it compromise the muscle remaining relaxed. To achieve this, Ca 2+ activated, regenerative Ca 2+ release that is robust in lower vertebrates needs to be suppressed in mammals. However, it has not been clear whether: i) the RyR1 can be opened by local increases in [Ca 2+ ] cyto ; and ii) downstream effectors of the SNS increase RyR Ca 2+ leak and subsequently, heat generation. By positioning amphibian and malignant hyperthermia-susceptible human-skinned muscle fibers perpendicularly, we induced abrupt rises in [Ca 2+ ] cyto under identical conditions optimized for activating regenerative Ca 2+ release as Ca 2+ waves passed through the junction of fibers. Only mammalian fibers showed resistance to rising [Ca 2+ ] cyto , resulting in increased SR Ca 2+ load and leak. Fiber heat output was increased by cyclic adenosine monophosphate (cAMP)-induced RyR1 phosphorylation at Ser2844 and Ca 2+ leak, indicating likely SNS regulation of thermogenesis. Thermogenesis occurred despite the absence of SR Ca 2+ pump regulator sarcolipin. Thus, evolutionary isolation of RyR1 provided increased dynamic range for thermogenesis with sensitivity to cAMP, supporting endothermy.

Funder

Department of Education and Training | Australian Research Council

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3