Relative mobility of screw versus edge dislocations controls the ductile-to-brittle transition in metals

Author:

Lu Yan,Zhang Yu-Heng,Ma En,Han Wei-Zhong

Abstract

Body-centered cubic metals including steels and refractory metals suffer from an abrupt ductile-to-brittle transition (DBT) at a critical temperature, hampering their performance and applications. Temperature-dependent dislocation mobility and dislocation nucleation have been proposed as the potential factors responsible for the DBT. However, the origin of this sudden switch from toughness to brittleness still remains a mystery. Here, we discover that the ratio of screw dislocation velocity to edge dislocation velocity is a controlling factor responsible for the DBT. A physical model was conceived to correlate the efficiency of Frank–Read dislocation source with the relative mobility of screw versus edge dislocations. A sufficiently high relative mobility is a prerequisite for the coordinated movement of screw and edge segments to sustain dislocation multiplication. Nanoindentation experiments found that DBT in chromium requires a critical mobility ratio of 0.7, above which the dislocation sources transition from disposable to regeneratable ones. The proposed model is also supported by the experimental results of iron, tungsten, and aluminum.

Funder

National Nature Science Foundation of China

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3