Dual-field-of-view high-spectral-resolution lidar: Simultaneous profiling of aerosol and water cloud to study aerosol–cloud interaction

Author:

Wang Nanchao1ORCID,Zhang Kai1,Shen Xue1,Wang Yuan2ORCID,Li Jing3,Li Chengcai3ORCID,Mao Jietai3,Malinka Aleksey4ORCID,Zhao Chuanfeng5ORCID,Russell Lynn M.6ORCID,Guo Jianping7,Gross Silke8,Liu Chong19,Yang Jing1,Chen Feitong1,Wu Lingyun1,Chen Sijie1,Ke Ju1,Xiao Da1,Zhou Yudi1ORCID,Fang Jing1,Liu Dong19ORCID

Affiliation:

1. State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310000, China

2. Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91109

3. Department of Atmospheric and Oceanic Sciences, Laboratory for Climate and Ocean-Atmosphere Studies, School of Physics, Peking University, Beijing 100871, China

4. Institute of Physics, National Academy of Sciences of Belarus, Minsk 220072, Belarus

5. State Key Laboratory of Earth Surface Processes and Resource Ecology, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100088, China

6. Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093

7. State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081, China

8. Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft und Raumfahrt, Oberpfaffenhofen 82234, Germany

9. International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310000, China

Abstract

Significance Aerosol–cloud interaction affects the cooling of Earth’s climate, mostly by activation of aerosols as cloud condensation nuclei that can increase the amount of sunlight reflected back to space. But the controlling physical processes remain uncertain in current climate models. We present a lidar-based technique as a unique remote-sensing tool without thermodynamic assumptions for simultaneously profiling diurnal aerosol and water cloud properties with high resolution. Direct lateral observations of cloud properties show that the vertical structure of low-level water clouds can be far from being perfectly adiabatic. Furthermore, our analysis reveals that, instead of an increase of liquid water path (LWP) as proposed by most general circulation models, elevated aerosol loading can cause a net decrease in LWP.

Funder

National Natural Science Foundation of China

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3