Long-term, climate-driven phenological shift in a tropical large carnivore

Author:

Abrahms Briana12ORCID,Rafiq Kasim12,Jordan Neil R.234,McNutt J. W.2

Affiliation:

1. Department of Biology, Center for Ecosystem Sentinels, University of Washington, Seattle, WA 98195

2. Botswana Predator Conservation, Maun, Botswana

3. Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia

4. Taronga Conservation Society Australia, Taronga Western Plains Zoo, Dubbo, NSW 2830, Australia

Abstract

Understanding the degree to which animals are shifting their phenology to track optimal conditions as the climate changes is essential to predicting ecological responses to global change. Species at low latitudes or high trophic levels are theoretically expected to exhibit weaker phenological responses than other species, but limited research on tropical systems or on top predators impedes insight into the contexts in which these predictions are upheld. Moreover, a lack of phenological studies on top predators limits understanding of how climate change impacts propagate through entire ecosystems. Using a 30-y dataset on endangered African wild dogs ( Lycaon pictus ), we examined changes in reproductive phenology and temperatures during birthing and denning over time, as well as potential fitness consequences of these changes. We hypothesized that their phenology would shift to track a stable thermal range over time. Data from 60 packs and 141 unique pack-years revealed that wild dogs have delayed parturition by 7 days per decade on average in response to long-term warming. This shift has led to temperatures on birthing dates remaining relatively stable but, contrary to expectation, has led to increased temperatures during denning periods. Increased denning temperatures were associated with reduced reproductive success, suggesting that a continued phenological shift in the species may become maladaptive. Such results indicate that climate-driven shifts could be more widespread in upper trophic levels than previously appreciated, and they extend theoretical understanding of the species traits and environmental contexts in which large phenological shifts can be expected to occur as the climate changes.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3