A complete biomimetic iron-sulfur cubane redox series

Author:

Grunwald Liam1ORCID,Clémancey Martin2ORCID,Klose Daniel1ORCID,Dubois Lionel3,Gambarelli Serge3,Jeschke Gunnar1ORCID,Wörle Michael1ORCID,Blondin Geneviève2ORCID,Mougel Victor1ORCID

Affiliation:

1. Department of Chemistry and Applied Biosciences (D-CHAB), ETH Zürich, CH-8093 Zürich, Switzerland

2. University of Grenoble Alpes, CNRS, Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Laboratoire de Chimie et Biologie des Métaux, Physicochimie des Métaux en Biologie (PMB), CEA Grenoble, Grenoble Cedex, F-38054 France

3. University of Grenoble Alpes, CNRS, CEA, IRIG, Systèmes Moléculaires et nanoMatériaux pour l'Énergie et la Santé (SyMMES), CEA Grenoble, Grenoble Cedex, F-38054 France

Abstract

Synthetic iron-sulfur cubanes are models for biological cofactors, which are essential to delineate oxidation states in the more complex enzymatic systems. However, a complete series of [Fe 4 S 4 ] n complexes spanning all redox states accessible by 1-electron transformations of the individual iron atoms ( n = 0–4+) has never been prepared, deterring the methodical comparison of structure and spectroscopic signature. Here, we demonstrate that the use of a bulky arylthiolate ligand promoting the encapsulation of alkali-metal cations in the vicinity of the cubane enables the synthesis of such a series. Characterization by EPR, 57 Fe Mössbauer spectroscopy, UV-visible electronic absorption, variable-temperature X-ray diffraction analysis, and cyclic voltammetry reveals key trends for the geometry of the Fe 4 S 4 core as well as for the Mössbauer isomer shift, which both correlate systematically with oxidation state. Furthermore, we confirm the S = 4 electronic ground state of the most reduced member of the series, [Fe 4 S 4 ] 0 , and provide electrochemical evidence that it is accessible within 0.82 V from the [Fe 4 S 4 ] 2+ state, highlighting its relevance as a mimic of the nitrogenase iron protein cluster.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3