Affiliation:
1. Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
2. Brain Repair and Imaging in Neural Systems, Department of Experimental Medical Science, Lund University, 22100 Lund, Sweden
Abstract
Receptors, transporters, and ion channels are important targets for therapy development in neurological diseases, but their mechanistic role in pathogenesis is often poorly understood. Gene editing and in vivo imaging approaches will help to identify the molecular and functional role of these targets and the consequence of their regional dysfunction on the whole-brain level. We combine CRISPR-Cas9 gene editing with in vivo positron emission tomography (PET) and functional MRI (fMRI) to investigate the direct link between genes, molecules, and the brain connectome. The extensive knowledge of the
Slc18a2
gene encoding the vesicular monoamine transporter (VMAT2), involved in the storage and release of dopamine, makes it an excellent target for studying the gene network relationships while structurally preserving neuronal integrity and function. We edited the
Slc18a2
in the substantia nigra pars compacta of adult rats and used in vivo molecular imaging besides behavioral, histological, and biochemical assessments to characterize the CRISPR-Cas9–mediated VMAT2 knockdown. Simultaneous PET/fMRI was performed to investigate molecular and functional brain alterations. We found that stage-specific adaptations of brain functional connectivity follow the selective impairment of presynaptic dopamine storage and release. Our study reveals that recruiting different brain networks is an early response to the dopaminergic dysfunction preceding neuronal cell loss. Our combinatorial approach is a tool to investigate the impact of specific genes on brain molecular and functional dynamics, which will help to develop tailored therapies for normalizing brain function.
Funder
German Research Foundation
Deutscher Akademischer Austauschdienst
Werner Siemens Foundation
Carl Zeiss Foundation
Publisher
Proceedings of the National Academy of Sciences
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献