Deep learning of dynamically responsive chemical Hamiltonians with semiempirical quantum mechanics

Author:

Zhou Guoqing12ORCID,Lubbers Nicholas3,Barros Kipton1,Tretiak Sergei124ORCID,Nebgen Benjamin14

Affiliation:

1. Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545

2. Center of Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545

3. Computer, Computational and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, NM 87545

4. Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM 87545

Abstract

Conventional machine-learning (ML) models in computational chemistry learn to directly predict molecular properties using quantum chemistry only for reference data. While these heuristic ML methods show quantum-level accuracy with speeds several orders of magnitude faster than traditional quantum chemistry methods, they suffer from poor extensibility and transferability; i.e., their accuracy degrades on large or new chemical systems. Incorporating quantum chemistry frameworks into the ML models directly solves this problem. Here we take the structure of semiempirical quantum mechanics (SEQM) methods to construct dynamically responsive Hamiltonians. SEQM methods use empirical parameters fitted to experimental properties to construct reduced-order Hamiltonians, facilitating much faster calculations than ab initio methods but with compromised accuracy. By replacing these static parameters with machine-learned dynamic values inferred from the local environment, we greatly improve the accuracy of the SEQM methods. Trained on molecular energies and atomic forces, these dynamically generated Hamiltonian parameters show a strong correlation with atomic hybridization and bonding. Trained with only about 60,000 small organic molecular conformers, the resulting model retains interpretability, extensibility, and transferability when testing on much larger chemical systems and predicting various molecular properties. Overall, this work demonstrates the virtues of incorporating physics-based descriptions with ML to develop models that are simultaneously accurate, transferable, and interpretable.

Funder

DOE | NNSA | LDRD | Los Alamos National Laboratory

DOE | SC | Basic Energy Sciences

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3