Large-scale distributed linear algebra with tensor processing units

Author:

Lewis Adam G. M.12ORCID,Beall Jackson12,Ganahl Martin12,Hauru Markus2ORCID,Mallick Shrestha Basu2,Vidal Guifre23

Affiliation:

1. Simulation & Optimization Team, Sandbox AQ, Palo Alto, CA 94301;

2. Sandbox Alphabet X, The Moonshot Factory, Mountain View, CA 94043;

3. Google Quantum AI, Google LLC, Santa Barbara, CA 93111

Abstract

We have repurposed Google tensor processing units (TPUs), application-specific chips developed for machine learning, into large-scale dense linear algebra supercomputers. The TPUs’ fast intercore interconnects (ICIs), physically two-dimensional network topology, and high-bandwidth memory (HBM) permit distributed matrix multiplication algorithms to rapidly become computationally bound. In this regime, the matrix-multiply units (MXUs) dominate the runtime, yielding impressive scaling, performance, and raw size: Operating in float32 precision, a full 2,048-core pod of third-generation TPUs can multiply two matrices with linear sizeN=220=1,048,576in about 2 min. Via curated algorithms emphasizing large, single-core matrix multiplications, other tasks in dense linear algebra can similarly scale. As examples, we present 1) QR decomposition; 2) resolution of linear systems; and 3) the computation of matrix functions by polynomial iteration, demonstrated by the matrix polar factorization.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Reference25 articles.

1. Learning data-driven discretizations for partial differential equations

2. Machine learning guided aptamer refinement and discovery

3. Machine learning–accelerated computational fluid dynamics

4. Kohn-Sham Equations as Regularizer: Building Prior Knowledge into Machine-Learned Physics

5. T. Lu, Y. F. Chen, B. Hechtman, T. Wang, J. Anderson, Large-scale discrete Fourier transform on TPUs. arXiv [Preprint] (2020). https://doi.org/10.48550/arXiv.2002.03260. Accessed 26 July 2022.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3