Affiliation:
1. Simulation & Optimization Team, Sandbox AQ, Palo Alto, CA 94301;
2. Sandbox Alphabet X, The Moonshot Factory, Mountain View, CA 94043;
3. Google Quantum AI, Google LLC, Santa Barbara, CA 93111
Abstract
We have repurposed Google tensor processing units (TPUs), application-specific chips developed for machine learning, into large-scale dense linear algebra supercomputers. The TPUs’ fast intercore interconnects (ICIs), physically two-dimensional network topology, and high-bandwidth memory (HBM) permit distributed matrix multiplication algorithms to rapidly become computationally bound. In this regime, the matrix-multiply units (MXUs) dominate the runtime, yielding impressive scaling, performance, and raw size: Operating in float32 precision, a full 2,048-core pod of third-generation TPUs can multiply two matrices with linear sizeN=220=1,048,576in about 2 min. Via curated algorithms emphasizing large, single-core matrix multiplications, other tasks in dense linear algebra can similarly scale. As examples, we present 1) QR decomposition; 2) resolution of linear systems; and 3) the computation of matrix functions by polynomial iteration, demonstrated by the matrix polar factorization.
Publisher
Proceedings of the National Academy of Sciences
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献