Reciprocal interplay between OTULIN–LUBAC determines genotoxic and inflammatory NF-κB signal responses

Author:

Li Mingqi1ORCID,Li Ling2ORCID,Asemota Sarah3,Kakhniashvili David4,Narayanan Ramesh3,Wang Xusheng2,Liao Francesca-Fang1ORCID

Affiliation:

1. Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163

2. Department of Biology, University of North Dakota, Grand Forks, ND 58202

3. Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103

4. Proteomics & Metabolomics Core Facility, Office of Research, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163

Abstract

Targeting nuclear factor-kappa B (NF-κB) represents a highly viable strategy against chemoresistance in cancers as well as cell death. Ubiquitination, including linear ubiquitination mediated by the linear ubiquitin chain assembly complex (LUBAC), is emerging as a crucial mechanism of overactivated NF-κB signaling. Ovarian tumor family deubiquitinase OTULIN is the only linear linkage–specific deubiquitinase; however, the molecular mechanisms of how it counteracts LUBAC-mediated NF-κB activation have been largely unknown. Here, we identify Lys64/66 of OTULIN for linear ubiquitination facilitated in a LUBAC-dependent manner as a necessary event required for OTULIN–LUBAC interaction under unstressed conditions, which becomes deubiquitinated by OTULIN itself in response to genotoxic stress. Furthermore, this self-deubiquitination of OTULIN occurs intermolecularly, mediated by OTULIN dimerization, resulting in the subsequent dissociation of OTULIN from the LUBAC complex and NF-κB overactivation. Oxidative stress induces OTULIN dimerization via cysteine-mediated covalent disulfide bonds. Our study reveals that the status of the physical interaction between OTULIN and LUBAC is a crucial determining factor for the genotoxic NF-κB signaling, as measured by cell survival and proliferation, while OTULIN loss of function resulting from its dimerization and deubiquitination leads to a dissociation of OTULIN from the LUBAC complex. Of note, similar molecular mechanisms apply to the inflammatory NF-κB signaling in response to tumor necrosis factor α. Hence, a fuller understanding of the detailed molecular mechanisms underlying the disruption of the OTULIN–LUBAC interaction will be instrumental for developing future therapeutic strategies against cancer chemoresistance and necroptotic processes pertinent to numerous human diseases.

Funder

HHS | NIH | National Institute on Aging

HHS | NIH | National Institute of Neurological Disorders and Stroke

HHS | NIH | National Cancer Institute

DOD | US Army | MEDCOM | MRDC | U.S. Army Medical Research Acquisition Activity

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3