Decadal migration phenology of a long-lived Arctic icon keeps pace with climate change

Author:

Shuert Courtney R.12ORCID,Marcoux Marianne3,Hussey Nigel E.1ORCID,Heide-Jørgensen Mads Peter4ORCID,Dietz Rune5ORCID,Auger-Méthé Marie26ORCID

Affiliation:

1. Department of Integrative Biology, University of Windsor, Windsor, ON N9B 3P4, Canada

2. Institute for the Oceans & Fisheries, University of British Columbia, Vancouver, BC V6T 1Z4, Canada

3. Freshwater Institute, Fisheries and Oceans Canada, Winnipeg, MB R3T 2N6, Canada

4. Department of Birds and Mammals, Greenland Institute of Natural Resources, København K, DK-1401 Denmark

5. Department of Ecoscience, Aarhus University, Roskilde, DK-4000 Denmark

6. Department of Statistics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada

Abstract

Animals migrate in response to seasonal environments, to reproduce, to benefit from resource pulses, or to avoid fluctuating hazards. Although climate change is predicted to modify migration, only a few studies to date have demonstrated phenological shifts in marine mammals. In the Arctic, marine mammals are considered among the most sensitive to ongoing climate change due to their narrow habitat preferences and long life spans. Longevity may prove an obstacle for species to evolutionarily respond. For species that exhibit high site fidelity and strong associations with migration routes, adjusting the timing of migration is one of the few recourses available to respond to a changing climate. Here, we demonstrate evidence of significant delays in the timing of narwhal autumn migrations with satellite tracking data spanning 21 y from the Canadian Arctic. Measures of migration phenology varied annually and were explained by sex and climate drivers associated with ice conditions, suggesting that narwhals are adopting strategic migration tactics. Male narwhals were found to lead the migration out of the summering areas, while females, potentially with dependent young, departed later. Narwhals are remaining longer in their summer areas at a rate of 10 d per decade, a similar rate to that observed for climate-driven sea ice loss across the region. The consequences of altered space use and timing have yet to be evaluated but will expose individuals to increasing natural changes and anthropogenic activities on the summering areas.

Funder

Mitacs

Gouvernement du Canada | Natural Sciences and Engineering Research Council of Canada

Molson Foundation

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3