Motor guidance by long-range communication on the microtubule highway

Author:

Wijeratne Sithara S.12ORCID,Fiorenza Shane A.3ORCID,Neary Alex E.2,Subramanian Radhika12ORCID,Betterton Meredith D.345ORCID

Affiliation:

1. Department of Genetics, Harvard Medical School, Boston, MA 02115

2. Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114

3. Department of Physics, University of Colorado Boulder, Boulder, CO 80309

4. Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309

5. Center for Computational Biology, Flatiron Institute, New York, NY 10010

Abstract

Coupling of motor proteins within arrays drives muscle contraction, flagellar beating, chromosome segregation, and other biological processes. Current models of motor coupling invoke either direct mechanical linkage or protein crowding, which rely on short-range motor–motor interactions. In contrast, coupling mechanisms that act at longer length scales remain largely unexplored. Here we report that microtubules can physically couple motor movement in the absence of detectable short-range interactions. The human kinesin-4 Kif4A changes the run length and velocity of other motors on the same microtubule in the dilute binding limit, when approximately 10-nm–sized motors are much farther apart than the motor size. This effect does not depend on specific motor–motor interactions because similar changes in Kif4A motility are induced by kinesin-1 motors. A micrometer-scale attractive interaction potential between motors is sufficient to recreate the experimental results in a biophysical model. Unexpectedly, our theory suggests that long-range microtubule-mediated coupling affects not only binding kinetics but also motor mechanochemistry. Therefore, the model predicts that motors can sense and respond to motors bound several micrometers away on a microtubule. Our results are consistent with a paradigm in which long-range motor interactions along the microtubule enable additional forms of collective motor behavior, possibly due to changes in the microtubule lattice.

Funder

National Science Foundation

HHS | NIH | National Institute of General Medical Sciences

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3