Variation of TNF modulates cellular immunity of gregarious and solitary locusts against fungal pathogen Metarhizium anisopliae

Author:

Wang Yundan1,Tong Xiwen1,Yuan Shenglei1,Yang Pengcheng2,Li Ling3,Zhao Yong3,Kang Le12ORCID

Affiliation:

1. State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China

2. Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China

3. State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China

Abstract

Significance Ecological immunology addresses the interactions between host immunity and the environment. Locusts display density-dependent phase transitions between solitary and gregarious locusts. In control practices and laboratory bioassays, gregarious locusts always exhibit stronger resistance to fungal pathogens than solitary locusts. However, few studies have investigated the mechanism of altered immune switch in locusts. Here, we combined mathematical simulation and experimental studies to show that gregarious locusts inhibit tumor necrosis factor (TNF) to alter immune defense by enhancing humoral defense and reducing cellular defense, and high levels of TNF reduce the survival of solitary locusts. Our study provides an important cue for understanding cellular immunity variations in response to different population densities and for improving the control efficacy of locust plagues.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

the Strategic Priority Research Program of the Chinese Academy of Sciences

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3