Thiol-based chemical probes exhibit antiviral activity against SARS-CoV-2 via allosteric disulfide disruption in the spike glycoprotein

Author:

Shi Yunlong1,Zeida Ari2ORCID,Edwards Caitlin E.3ORCID,Mallory Michael L.3,Sastre Santiago2,Machado Matías R.4,Pickles Raymond J.56,Fu Ling7,Liu Keke7,Yang Jing7ORCID,Baric Ralph S.3ORCID,Boucher Richard C.5,Radi Rafael2,Carroll Kate S.1ORCID

Affiliation:

1. Department of Chemistry, Scripps Research, Jupiter, FL 33458

2. Departamento de Bioquímica, Facultad de Medicina and Centro de Investigaciones Biomédicas, Universidad de la República, Montevideo 11800, Uruguay

3. Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599

4. Protein Engineering Unit, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay

5. Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599

6. Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599

7. State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing 102206, China

Abstract

Significance Some coronaviruses utilize angiotensin-converting enzyme 2 (ACE2) for entry into host cells. Although reducing agents, such as N -acetylcysteine, disrupt viral binding to ACE2 in general, these compounds are cytotoxic, have low potency, and because of their membrane permeability, have undefined mechanism of action. With qualitative chemoproteomic mapping to delineate cysteine thiol/disulfide reactivity in native spike and recombinant receptor binding domain (RBD), we report nontoxic, cell-impermeable thiol-based chemical probes that significantly decrease the ACE2 binding and infectivity of SARS-CoV-2. We map the reactive cysteines and show the dynamic consequences of breaking allosteric disulfide bonds in the RBD. Altogether, our work underscores a clear redox-based mechanism of antiviral activity in which reducing compounds disrupt key RBD disulfides specifically in extracellular spaces.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3