26S proteasomes become stably activated upon heat shock when ubiquitination and protein degradation increase

Author:

Lee Donghoon1,Goldberg Alfred L.1ORCID

Affiliation:

1. Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115

Abstract

Heat shock (HS) promotes protein unfolding, and cells respond by stimulating HS gene expression, ubiquitination of cell proteins, and proteolysis by the proteasome. Exposing HeLa and other cells to 43 °C for 2 h caused a twofold increase in the 26S proteasomes’ peptidase activity assayed at 37 °C. This increase in activity occurred without any change in proteasome amount and did not require new protein synthesis. After affinity-purification from HS cells, 26S proteasomes still hydrolyzed peptides, adenosine 5′-triphosphate, and ubiquitinated substrates more rapidly without any evident change in subunit composition, postsynthetic modification, or association with reported proteasome-activating proteins. After returning HS cells to 37 °C, ubiquitin conjugates and proteolysis fell rapidly, but proteasome activity remained high for at least 16 h. Exposure to arsenite, which also causes proteotoxic stress in the cytosol, but not tunicamycin, which causes endoplasmic reticulum stress, also increased ubiquitin conjugate levels and 26S proteasome activity. Although the molecular basis for the enhanced proteasomal activity remains elusive, we studied possible signaling mechanisms. Proteasome activation upon proteotoxic stress required the accumulation of ubiquitinated proteins since blocking ubiquitination by E1 inhibition during HS or arsenite exposure prevented the stimulation of 26S activity. Furthermore, increasing cellular content of ubiquitin conjugates at 37 °C by inhibiting deubiquitinating enzymes with RA190 or b-AP15 also caused proteasome activation. Thus, cells respond to proteotoxic stresses, apparently in response to the accumulation of ubiquitinated proteins, by activating 26S proteasomes, which should help promote the clearance of damaged cell proteins.

Funder

HHS | NIH | National Institute of General Medical Sciences

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3