Estimating the benefits of stream water quality improvements in urbanizing watersheds: An ecological production function approach

Author:

von Haefen Roger H.12ORCID,Van Houtven George3,Naumenko Alexandra4,Obenour Daniel R.5ORCID,Miller Jonathan W.5ORCID,Kenney Melissa A.6,Gerst Michael D.7ORCID,Waters Hillary6ORCID

Affiliation:

1. Department of Agricultural and Resource Economics, North Carolina State University, Raleigh, NC 27695-8109

2. Center for Environmental and Resource Economic Policy, North Carolina State University, Raleigh, NC 27695-8109

3. Center for Water Resources, RTI International, Research Triangle Park, NC 27709

4. Global Data Science, Visa, Inc., Foster City, CA 94404

5. Department of Civil, Construction and Environmental Engineering, North Carolina State University, Raleigh, NC 27695-7908

6. Institute on the Environment, 325 Learning and Environmental Sciences, University of Minnesota, St. Paul, MN 55108

7. Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD 20740

Abstract

Streams in urbanizing watersheds are threatened by economic development that can lead to excessive sediment erosion and surface runoff. These anthropogenic stressors diminish valuable ecosystem services and result in pervasive degradation commonly referred to as “urban stream syndrome.” Understanding how the public perceives and values improvements in stream conditions is necessary to support efforts to quantify the economic benefits of water quality improvements. We develop an ecological production framework that translates measurable indicators of stream water quality into ecological endpoints. Our interdisciplinary approach integrates a predictive hierarchical water quality model that is well suited for sparse data environments, an expert elicitation that translates measurable water quality indicators into ecological endpoints that focus group participants identified as most relevant, and a stated preference survey that elicits the public’s willingness to pay for changes in these endpoints. To illustrate our methods, we develop an application to the Upper Neuse River Watershed located in the rapidly developing Triangle region of North Carolina (the United States). Our results suggest, for example, that residents are willing to pay roughly $127 per household and $54 million per year in aggregate (2021 US$) for water quality improvements resulting from a stylized intervention that increases stream bank canopy cover by 25% and decreases runoff from impervious surfaces, leading to improvements in water quality and ecological endpoints for local streams. Although the three components of our analysis are conducted with data from North Carolina, we discuss how our findings are generalizable to urban and urbanizing areas across the larger Piedmont ecoregion of the Eastern United States.

Funder

U.S. Environmental Protection Agency

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3