Do digital technologies reduce racially biased reporting? Evidence from NYPD administrative data

Author:

Watson Jeremy1ORCID,Burtch Gordon2ORCID,Greenwood Brad N.3ORCID

Affiliation:

1. Carlson School of Management, University of Minnesota-Twin Cities, Minneapolis, MN 55455

2. Questrom School of Business, Boston University, Boston, MA 02215

3. Costello College of Business, George Mason University, Fairfax, VA 22030

Abstract

Recent work has emphasized the disproportionate bias faced by minorities when interacting with law enforcement. However, research on the topic has been hampered by biased sampling in administrative data, namely that records of police interactions with citizens only reflect information on the civilians that police elect to investigate, and not civilians that police observe but do not investigate. In this work, we address a related bias in administrative police data which has received less empirical attention, namely reporting biases around investigations that have taken place. Further, we investigate whether digital monitoring tools help mitigate this reporting bias. To do so, we examine changes in reports of interactions between law enforcement and citizens in the wake of the New York City Police Department’s replacement of analog memo books with mobile smartphones. Results from a staggered difference in differences estimation indicate a significant increase in reports of citizen stops once the new smartphones are deployed. Importantly, we observe that the rise is driven by increased reports of “unproductive” stops, stops involving non-White citizens, and stops occurring in areas characterized by a greater concentration of crime and non-White residents. These results reinforce the recent observation that prior work has likely underestimated the extent of racial bias in policing. Further, they highlight that the implementation of digital monitoring tools can mitigate the issue to some extent.

Publisher

Proceedings of the National Academy of Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3