Iron silicate perovskite and postperovskite in the deep lower mantle

Author:

Yang Ziqiang1ORCID,Song Zijun2,Wu Zhongqing234ORCID,Mao Ho-kwang15,Zhang Li1ORCID

Affiliation:

1. Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China

2. Laboratory of Seismology and Physics of Earth’s Interior, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China

3. Chinese Academy of Sciences Center for Excellence in Comparative Planetology, University of Science and Technology of China, Hefei, Anhui 233500, China

4. National Geophysical Observatory at Mengcheng, University of Science and Technology of China, Hefei, Anhui 233500, China

5. Shanghai Key Laboratory MFree, Institute for Shanghai Advanced Research in Physical Sciences, Shanghai 201203, China

Abstract

Ferromagnesian silicates are the dominant constituents of the Earth’s mantle, which comprise more than 80% of our planet by volume. To interpret the low shear-velocity anomalies in the lower mantle, we need to construct a reliable transformation diagram of ferromagnesian silicates over a wide pressure–temperature ( P-T ) range. While MgSiO 3 in the perovskite structure has been extensively studied due to its dominance on Earth, phase transformations of iron silicates under the lower mantle conditions remain unresolved. In this study, we have obtained an iron silicate phase in the perovskite (Pv) structure using synthetic fayalite (Fe 2 SiO 4 ) as the starting material under P-T conditions of the lower mantle. Chemical analyses revealed an unexpectedly high Fe/Si ratio of 1.72(3) for the Pv phase in coexistence with metallic iron particles, indicating incorporation of about 25 mol% Fe 2 O 3 in the Pv phase with an approximate chemical formula (Fe 2+ 0.75 Fe 3+ 0.25 )(Fe 3+ 0.25 Si 0.75 )O 3 . We further obtained an iron silicate phase in the postperovskite (PPv) structure above 95 GPa. The calculated curves of compressional ( V P ) and shear velocity ( V S ) of iron silicate Pv and PPv as a function of pressure are nearly parallel to those of MgSiO 3 , respectively. To the best of our knowledge, the iron silicate Pv and PPv are the densest phases among all the reported silicates stable at P-T conditions of the lower mantle. The high ferric iron content in the silicate phase and the spin-crossover of ferric iron at the Si-site above ~55 GPa should be taken into account in order to interpret the seismic observations. Our results would provide crucial information for constraining the geophysical and geochemical models of the lower mantle.

Funder

National Natural Science Foundation of China

Publisher

Proceedings of the National Academy of Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3