Regulation of intercellular viscosity by E-cadherin-dependent phosphorylation of EGFR in collective cell migration

Author:

Fu Chaoyu1,Dilasser Florian1,Lin Shao-Zhen2ORCID,Karnat Marc2,Arora Aditya1,Rajendiran Harini1,Ong Hui Ting1ORCID,Mui Hoon Brenda Nai3ORCID,Phow Sound Wai1,Hirashima Tsuyoshi1ORCID,Sheetz Michael1ORCID,Rupprecht Jean-François2ORCID,Tlili Sham4,Viasnoff Virgile15

Affiliation:

1. Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore

2. Aix Marseille Univ, Université de Toulon, CNRS, Centre de Physique Theorique (UMR 7332), Turing Centre for Living systems, Marseille 13009, France

3. Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore

4. Aix Marseille Univ, Institut de Biologie du developpement de Marseille (UMR 7288), Turing Centre for Living systems, Marseille 13009, France

5. CNRS International Research Lab 3639, Singapore 117411, Singapore

Abstract

Collective cell migration is crucial in various physiological processes, including wound healing, morphogenesis, and cancer metastasis. Adherens Junctions (AJs) play a pivotal role in regulating cell cohesion and migration dynamics during tissue remodeling. While the role and origin of the junctional mechanical tension at AJs have been extensively studied, the influence of the actin cortex structure and dynamics on junction plasticity remains incompletely understood. Moreover, the mechanisms underlying stress dissipation at junctions are not well elucidated. Here, we found that the ligand-independent phosphorylation of epithelial growth factor receptor (EGFR) downstream of de novo E-cadherin adhesion orchestrates a feedback loop, governing intercellular viscosity via the Rac pathway regulating actin dynamics. Our findings highlight how the E-cadherin-dependent EGFR activity controls the migration mode of collective cell movements independently of intercellular tension. This modulation of effective viscosity coordinates cellular movements within the expanding monolayer, inducing a transition from swirling to laminar flow patterns while maintaining a constant migration front speed. Additionally, we propose a vertex model with adjustable junctional viscosity, capable of replicating all observed cellular flow phenotypes experimentally.

Funder

Ministry of Education - Singapore

National Research Foundation Singapore

Agence Nationale de la Recherche

Publisher

Proceedings of the National Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3