Spontaneous eye movements reflect the representational geometries of conceptual spaces

Author:

Viganò Simone12ORCID,Bayramova Rena13,Doeller Christian F.14,Bottini Roberto2ORCID

Affiliation:

1. Max Planck Institute for Human Cognitive and Brain Sciences, Department of Psychology, Leipzig 04103, Germany

2. Center for Mind/Brain Sciences, University of Trento, Rovereto 38068, Italy

3. Max Planck School of Cognition, Max Planck Institute of Human Cognitive and Brain Sciences, Department of Psychology, Leipzig 04103, Germany

4. Kavli Institute for Systems Neuroscience, Center for Neural Computation, The Egil and Pauline Braathen and Fred Kavli Center for Cortical Microcircuits, Jebsen Center for Alzheimer’s Disease, Norwegian University of Science and Technology, Trondheim 7491, Norway

Abstract

Functional neuroimaging studies indicate that the human brain can represent concepts and their relational structure in memory using coding schemes typical of spatial navigation. However, whether we can read out the internal representational geometries of conceptual spaces solely from human behavior remains unclear. Here, we report that the relational structure between concepts in memory might be reflected in spontaneous eye movements during verbal fluency tasks: When we asked participants to randomly generate numbers, their eye movements correlated with distances along the left-to-right one-dimensional geometry of the number space (mental number line), while they scaled with distance along the ring-like two-dimensional geometry of the color space (color wheel) when they randomly generated color names. Moreover, when participants randomly produced animal names, eye movements correlated with low-dimensional similarity in word frequencies. These results suggest that the representational geometries used to internally organize conceptual spaces might be read out from gaze behavior.

Funder

EC | ERC | HORIZON EUROPE European Research Council

EC | European Research Council

Publisher

Proceedings of the National Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3