UDP-glycosyltransferases act as key determinants of host plant range in generalist and specialist Spodoptera species

Author:

Wang Huidong1,Song Jing1,Hunt Benjamin J.2ORCID,Zuo Kairan1,Zhou Huiru1,Hayward Angela2ORCID,Li Bingbing1,Xiao Yajuan1,Geng Xing1,Bass Chris2,Zhou Shutang1

Affiliation:

1. State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, College of Agriculture, Henan University, Kaifeng 475004, Henan, China

2. Centre for Ecology and Conservation, University of Exeter, Penryn TR10 9FE, United Kingdom

Abstract

Phytophagous insects have evolved sophisticated detoxification systems to overcome the antiherbivore chemical defenses produced by many plants. However, how these biotransformation systems differ in generalist and specialist insect species and their role in determining insect host plant range remains an open question. Here, we show that UDP-glucosyltransferases (UGTs) play a key role in determining the host range of insect species within the Spodoptera genus. Comparative genomic analyses of Spodoptera species that differ in host plant breadth identified a relatively conserved number of UGT genes in generalist species but high levels of UGT gene pseudogenization in the specialist Spodoptera picta . CRISPR-Cas9 knockouts of the three main UGT gene clusters of Spodoptera frugiperda revealed that UGT33 genes play an important role in allowing this species to utilize the poaceous plants maize, wheat, and rice, while UGT40 genes facilitate utilization of cotton. Further functional analyses in vivo and in vitro identified the UGT SfUGT33F32 as the key mechanism that allows generalist S. frugiperda to detoxify the benzoxazinoid DIMBOA (2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one), a potent insecticidal phytotoxin produced by poaceous plants. However, while this detoxification capacity is conserved in several generalist Spodoptera species, Spodoptera picta , which specializes on Crinum plants, is unable to detoxify DIMBOA due to a nonfunctionalizing mutation in SpUGT33F34 . Collectively, these findings provide insight into the role of insect UGTs in host plant adaptation, the mechanistic basis of evolutionary transitions between generalism and specialism and offer molecular targets for controlling a group of notorious insect pests.

Funder

河南省人民政府 | National Natural Science Foundation of China-Henan Joint Fund

河南省科学技术厅 | Natural Science Foundation of Henan Province

Young Elite Scientists Sponsorship Program by Henan Province

Key Research and Development Project of Henan Province

Publisher

Proceedings of the National Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3