A quantitative model of temperature-dependent diapause progression

Author:

von Schmalensee Loke12ORCID,Süess Philip1,Roberts Kevin T.13,Gotthard Karl12ORCID,Lehmann Philipp13ORCID

Affiliation:

1. Department of Zoology, Stockholm University, Stockholm 10691, Sweden

2. RT4, Climate, Ecosystems and Biodiversity, Bolin Centre for Climate Research, Stockholm University, Stockholm 10691, Sweden

3. Department of Animal Physiology, Zoological Institute and Museum, University of Greifswald, Greifswald 17489, Germany

Abstract

Winter diapause in insects is commonly terminated through cold exposure, which, like vernalization in plants, prevents development before spring arrives. Currently, quantitative understanding of the temperature dependence of diapause termination is limited, likely because diapause phenotypes are generally cryptic to human eyes. We introduce a methodology to tackle this challenge. By consecutively moving butterfly pupae of the species Pieris napi from several different cold conditions to 20 °C, we show that diapause termination proceeds as a temperature-dependent rate process, with maximal rates at relatively cold temperatures and low rates at warm and extremely cold temperatures. Further, we show that the resulting thermal reaction norm can predict P. napi diapause termination timing under variable temperatures. Last, we show that once diapause is terminated in P. napi , subsequent development follows a typical thermal performance curve, with a maximal development rate at around 31 °C and a minimum at around 2 °C. The sequence of these thermally distinct processes (diapause termination and postdiapause development) facilitates synchronous spring eclosion in nature; cold microclimates where diapause progresses quickly do not promote fast postdiapause development, allowing individuals in warmer winter microclimates to catch up, and vice versa. The unveiling of diapause termination as one temperature-dependent rate process among others promotes a parsimonious, quantitative, and predictive model, wherein winter diapause functions both as an adaptation against premature development during fall and winter and for synchrony in spring.

Funder

Vetenskapsrådet

Svenska Forskningsrådet Formas

Knut och Alice Wallenbergs Stiftelse

Carl Tryggers Stiftelse för Vetenskaplig Forskning

Publisher

Proceedings of the National Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3