Unexpected increase of the deuterium to hydrogen ratio in the Venus mesosphere

Author:

Mahieux Arnaud12ORCID,Viscardy Sébastien1ORCID,Yelle Roger Vincent3,Karyu Hiroki4ORCID,Chamberlain Sarah1,Robert Séverine1ORCID,Piccialli Arianna1,Trompet Loïc1ORCID,Erwin Justin Tyler1,Ubukata Soma4,Nakagawa Hiromu4,Koyama Shungo4,Maggiolo Romain1,Pereira Nuno1,Cessateur Gaël1,Willame Yannick1,Vandaele Ann Carine1ORCID

Affiliation:

1. Division of Planetary Atmosphere, Royal Belgian Institute for Space Aeronomy, Brussels 1180, Belgium

2. Computational Flow Physics Laboratory, Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, TX 78712

3. Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721

4. Graduate School of Science, Department of Geophysics, Tohoku University, Sendai 980-8576, Japan

Abstract

This study analyzes H 2 O and HDO vertical profiles in the Venus mesosphere using Venus Express/Solar Occultation in the InfraRed data. The findings show increasing H 2 O and HDO volume mixing ratios with altitude, with the D/H ratio rising significantly from 0.025 at ~70 km to 0.24 at ~108 km. This indicates an increase from 162 to 1,519 times the Earth’s ratio within 40 km. The study explores two hypotheses for these results: isotopic fractionation from photolysis of H 2 O over HDO or from phase change processes. The latter, involving condensation and evaporation of sulfuric acid aerosols, as suggested by previous authors [X. Zhang et al. , Nat. Geosci. 3, 834–837 (2010)], aligns more closely with the rapid changes observed. Vertical transport computations for H 2 O, HDO, and aerosols show water vapor downwelling and aerosols upwelling. We propose a mechanism where aerosols form in the lower mesosphere due to temperatures below the water condensation threshold, leading to deuterium-enriched aerosols. These aerosols ascend, evaporate at higher temperatures, and release more HDO than H 2 O, which are then transported downward. Moreover, this cycle may explain the SO 2 increase in the upper mesosphere observed above 80 km. The study highlights two crucial implications. First, altitude variation is critical to determining the Venus deuterium and hydrogen reservoirs. Second, the altitude-dependent increase of the D/H ratio affects H and D escape rates. The photolysis of H 2 O and HDO at higher altitudes releases more D, influencing long-term D/H evolution. These findings suggest that evolutionary models should incorporate altitude-dependent processes for accurate D/H fractionation predictions.

Funder

ESA Prodex

European Union FP7

Marie Sklodowska Curie Action from the EU

Belgian Federal Science Policy Office

MEXT | Japan Society for the Promotion of Science

International Joint Graduate Program in Earth and Environmental Sciences

European Union Horizon 2020

Publisher

Proceedings of the National Academy of Sciences

Reference51 articles.

1. The 1.10- and 1.18-μm nightside windows of Venus observed by SPICAV-IR aboard Venus Express

2. Atmospheric Evolution on Inhabited and Lifeless Worlds

3. Submillimeter mapping of mesospheric minor species on Venus with ALMA

4. C. Tsang T. Encrenaz C. N. DeWitt M. Richter P. Irwin Airborne measurements of Venus cloud-top H2O and HDO from NASA’s SOFIA in the mid-infrared (meeting #49 id.502.04 Division for Planetary Science (DPS) American Astronomical Society Provo UT 2017) p. 502.504.

5. HDO and H2O vertical distributions and isotopic ratio in the Venus mesosphere by solar occultation at infrared spectrometer onboard Venus Express;Fedorova A.;J. Geophys. Res.,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3