Achieving metal-like catalysis from semiconductors for on-surface synthesis

Author:

E Wenlong12ORCID,Yi Wei13,Ding Honghe4ORCID,Zhu Junfa4,Rosei Federico5,Yang Xueming16ORCID,Yu Miao137ORCID

Affiliation:

1. State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

3. State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China

4. National Synchrotron Radiation Laboratory and Department of Chemical Physics, University of Science and Technology of China, Hefei 230029, China

5. Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste 34127, Italy

6. Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China

7. School of Materials and Energy, University of Electronic Science and Technology, Chengdu 610000, China

Abstract

Free of posttransfer, on-surface synthesis (OSS) of single-atomic-layer nanostructures directly on semiconductors holds considerable potential for next-generation devices. However, due to the high diffusion barrier and abundant defects on semiconductor surfaces, extended and well-defined OSS on semiconductors has major difficulty. Furthermore, given semiconductors’ limited thermal catalytic activity, initiating high-barrier reactions remains a significant challenge. Herein, using TiO 2 (011) as a prototype, we present an effective strategy for steering the molecule adsorption and reaction processes on semiconductors, delivering lengthy graphene nanoribbons with extendable widths. By introducing interstitial titanium (Ti int ) and oxygen vacancies (O v ), we convert TiO 2 (011) from a passive supporting template into a metal-like catalytic platform. This regulation shifts electron density and surface dipoles, resulting in tunable catalytic activity together with varied molecule adsorption and diffusion. Cyclodehydrogenation, which is inefficient on pristine TiO 2 (011), is markedly improved on Ti int /O v -doped TiO 2 . Even interribbon cyclodehydrogenation is achieved. The final product’s dimensions, quality, and coverage are all controllable. Ti int doping outperforms O v in producing regular and prolonged products, whereas excessive Ti int compromises molecule landing and coupling. This work demonstrates the crucial role of semiconductor substrates in OSS and advances OSS on semiconductors from an empirical trial-and-error methodology to a systematic and controllable paradigm.

Funder

MOST | National Natural Science Foundation of China

Publisher

Proceedings of the National Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3