Transient charge-driven 3D conformal printing via pulsed-plasma impingement

Author:

Jiang Yu12ORCID,Ye Dong12ORCID,Li Aokang12ORCID,Zhang Bo3ORCID,Han Wenhu3ORCID,Niu Xuechen4ORCID,Zeng Mingtao12ORCID,Guo Lianbo4ORCID,Zhang Guanjun3ORCID,Yin Zhouping12ORCID,Huang YongAn12ORCID

Affiliation:

1. State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China

2. Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China

3. State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China

4. Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China

Abstract

Seamless integration of microstructures and circuits on three-dimensional (3D) complex surfaces is of significance and is catalyzing the emergence of many innovative 3D curvy electronic devices. However, patterning fine features on arbitrary 3D targets remains challenging. Here, we propose a facile charge-driven electrohydrodynamic 3D microprinting technique that allows micron- and even submicron-scale patterning of functional inks on a couple of 3D-shaped dielectrics via an atmospheric-pressure cold plasma jet. Relying on the transient charging of exposed sites arising from the weakly ionized gas jet, the specified charge is programmably deposited onto the surface as a virtual electrode with spatial and time spans of ~mm in diameter and ~μs in duration to generate a localized electric field accordantly. Therefore, inks with a wide range of viscosities can be directly drawn out from micro-orifices and deposited on both two-dimensional (2D) planar and 3D curved surfaces with a curvature radius down to ~1 mm and even on the inner wall of narrow cavities via localized electrostatic attraction, exhibiting a printing resolution of ~450 nm. In addition, several conformal electronic devices were successfully printed on 3D dielectric objects. Self-aligned 3D microprinting, with stacking layers up to 1400, is also achieved due to the electrified surfaces. This microplasma-induced printing technique exhibits great advantages such as ultrahigh resolution, excellent compatibility of inks and substrates, antigravity droplet dispersion, and omnidirectional printing on 3D freeform surfaces. It could provide a promising solution for intimately fabricating electronic devices on arbitrary 3D surfaces.

Funder

MOST | National Key Research and Development Program of China

MOST | National Natural Science Foundation of China

Publisher

Proceedings of the National Academy of Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3