Oxygen-bridging Fe, Co dual-metal dimers boost reversible oxygen electrocatalysis for rechargeable Zn–air batteries

Author:

Zhou Qixing1ORCID,Xue Wendan1,Cui Xun2ORCID,Wang Pengfei1,Zuo Sijin3ORCID,Mo Fan1ORCID,Li Chengzhi1,Liu Gaolei1,Ouyang Shaohu1,Zhan Sihui1,Chen Juan4,Wang Chao4

Affiliation:

1. Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Carbon Neutrality Interdisciplinary Science Centre/College of Environmental Science and Engineering, Nankai University, Tianjin 300350, People’s Republic of China

2. State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, People’s Republic of China

3. State of Key Laboratory of Natural Medicines School of Engineering, China Pharmaceutical University, Nanjing 210009, People’s Republic of China

4. College of Environment, Hohai University, Nanjing 210098, People’s Republic of China

Abstract

Rechargeable zinc–air batteries (ZABs) are regarded as a remarkably promising alternative to current lithium-ion batteries, addressing the requirements for large-scale high-energy storage. Nevertheless, the sluggish kinetics involving oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) hamper the widespread application of ZABs, necessitating the development of high-efficiency and durable bifunctional electrocatalysts. Here, we report oxygen atom–bridged Fe, Co dual-metal dimers (FeOCo-SAD), in which the active site Fe–O–Co–N 6 moiety boosts exceptional reversible activity toward ORR and OER in alkaline electrolytes. Specifically, FeOCo-SAD achieves a half-wave potential ( E 1/2 ) of 0.87 V for ORR and an overpotential of 310 mV at a current density of 10 mA cm –2 for OER, with a potential gap (Δ E ) of only 0.67 V. Meanwhile, FeOCo-SAD manifests high performance with a peak power density of 241.24 mW cm −2 in realistic rechargeable ZABs. Theoretical calculations demonstrate that the introduction of an oxygen bridge in the Fe, Co dimer induced charge spatial redistribution around Fe and Co atoms. This enhances the activation of oxygen and optimizes the adsorption/desorption dynamics of reaction intermediates. Consequently, energy barriers are effectively reduced, leading to a strong promotion of intrinsic activity toward ORR and OER. This work suggests that oxygen-bridging dual-metal dimers offer promising prospects for significantly enhancing the performance of reversible oxygen electrocatalysis and for creating innovative catalysts that exhibit synergistic effects and electronic states.

Funder

Ministry of Science and Technology of the People's Republic of China as a National Key Research and Development Program

MOST | National Natural Science Foundation of China

Publisher

Proceedings of the National Academy of Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3