The role of the water contact layer on hydration and transport at solid/liquid interfaces

Author:

Gäding J.12ORCID,Della Balda V.3ORCID,Lan J.45,Konrad J.1ORCID,Iannuzzi M.3ORCID,Meißner R. H.12ORCID,Tocci G.3ORCID

Affiliation:

1. Institute of Soft Matter Modeling, Hamburg University of Technology, Hamburg 21073, Germany

2. Institute of Surface Science, Department of Atomistic Corrosion Informatics, Helmholtz-Zentrum Hereon, Geesthacht 21502, Germany

3. Department of Chemistry, University of Zurich, Zurich 8057, Switzerland

4. Department of Chemistry, New York University, New York, NY 10003

5. Department of Chemistry, Simons Center for Computational Physical Chemistry at New York University, New York, NY 10003

Abstract

Understanding the structure in the nanoscopic region of water that is in direct contact with solid surfaces, so-called contact layer, is key to quantifying macroscopic properties that are of interest to e.g. catalysis, ice nucleation, nanofluidics, gas adsorption, and sensing. We explore the structure of the water contact layer on various technologically relevant solid surfaces, namely graphene, MoS 2 , Au(111), Au(100), Pt(111), and Pt(100), which have been previously hampered by time and length scale limitations of ab initio approaches or force field inaccuracies, by means of molecular dynamics simulations based on ab initio machine learning potentials built using an active learning scheme. Our results reveal that the in-plane intermolecular correlations of the water contact layer vary greatly among different systems: Whereas the contact layer on graphene and on Au(111) is predominantly homogeneous and isotropic, it is inhomogeneous and anisotropic on MoS 2 , on Au(100), and on the Pt surfaces, where it additionally forms two distinct sublayers. We apply hydrodynamics and the theory of the hydrophobic effect, to relate the energy corrugation and the characteristic length-scales of the contact layer with wetting, slippage, the hydration of small hydrophobic solutes and diffusio-osmotic transport. Thus, this work provides a microscopic picture of the water contact layer and links it to macroscopic properties of liquid/solid interfaces that are measured experimentally and that are relevant to wetting, hydrophobic solvation, nanofluidics, and osmotic transport.

Funder

Deutsche Forschungsgemeinschaft

Simons Foundation

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Proceedings of the National Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3