Author:
Chameau Pascal,Inta Dragos,Vitalis Tania,Monyer Hannah,Wadman Wytse J.,van Hooft Johannes A.
Abstract
Cajal-Retzius cells, located in layer I of the cortex, synthesize and secrete the glycoprotein reelin, which plays a pivotal role in neuronal migration during embryonic development. Cajal-Retzius cells persist after birth, but their postnatal role is unknown. Here we show that Cajal-Retzius cells receive a major excitatory synaptic input via serotonin 5-HT3receptors. Blocking this input using pharmacological tools or neutralization of reelin signaling results in hypercomplexity of apical, but not basal, dendrites of cortical layer II/III pyramidal neurons. A similar hypercomplexity is observed in the cortex of the 5-HT3Areceptor knockout mouse. The increased dendritic complexity can be rescued by application of recombinant full-length reelin or its N-terminal fragment, but not by the central fragment of reelin, and involves a signal transduction pathway independent of the activation of the canonical reelin receptors. Taken together, our results reveal a novel role of serotonin, Cajal-Retzius cells, and reelin in the postnatal maturation of the cortex.
Publisher
Proceedings of the National Academy of Sciences
Cited by
102 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献