An in-depth examination of requirements for disclosure risk assessment

Author:

Jarmin Ron S.1ORCID,Abowd John M.2ORCID,Ashmead Robert1ORCID,Cumings-Menon Ryan1ORCID,Goldschlag Nathan1,Hawes Michael B.1,Keller Sallie Ann13ORCID,Kifer Daniel14ORCID,Leclerc Philip1ORCID,Reiter Jerome P.15ORCID,Rodríguez Rolando A.1ORCID,Schmutte Ian6,Velkoff Victoria A.1,Zhuravlev Pavel1ORCID

Affiliation:

1. U.S. Census Bureau, Office of the Deputy Director, Washington, DC 20233

2. Department of Economics, Cornell University, Ithaca, NY 14853

3. Biocomplexity Institute, University of Virginia, Charlottesville, VA 22904

4. Department of Computer Science and Engineering, Penn State University, University Park, PA 16802

5. Department of Statistical Science, Duke University, Durham, NC 27708

6. Department of Economics, University of Georgia, Athens, GA 30602

Abstract

The use of formal privacy to protect the confidentiality of responses in the 2020 Decennial Census of Population and Housing has triggered renewed interest and debate over how to measure the disclosure risks and societal benefits of the published data products. We argue that any proposal for quantifying disclosure risk should be based on prespecified, objective criteria. We illustrate this approach to evaluate the absolute disclosure risk framework, the counterfactual framework underlying differential privacy, and prior-to-posterior comparisons. We conclude that satisfying all the desiderata is impossible, but counterfactual comparisons satisfy the most while absolute disclosure risk satisfies the fewest. Furthermore, we explain that many of the criticisms levied against differential privacy would be levied against any technology that is not equivalent to direct, unrestricted access to confidential data. More research is needed, but in the near term, the counterfactual approach appears best-suited for privacy versus utility analysis.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Reference53 articles.

1. Baldridge v. Shapiro 455 U.S. 345 (US Supreme Court 1982). https://supreme.justia.com/cases/federal/us/455/345/. Retrieved 12 September 2023.

2. Privacy in Context

3. Federal Committee on Statistical Policy “Statistical Policy Working Paper 2: Report on statistical disclosure and disclosure-avoidance techniques” (Tech. Rep. 1978).

4. C. Dwork F. McSherry K. Nissim A. Smith “Calibrating Noise to Sensitivity Private Data Analysis” in TCC TCC’06 (Springer-Verlag Berlin Heidelberg 2006) pp. 265–284.

5. C. Dwork, “Differential Privacy” in Automata, Languages and Programming, M. Bugliesi, B. Preneel, V. Sassone, I. Wegener, Eds. (Springer: Berlin Heidelberg, 2006), pp. 1–12.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3