De novo designed ice-binding proteins from twist-constrained helices

Author:

de Haas Robbert J.1,Tas Roderick P.2ORCID,van den Broek Daniëlle2,Zheng Chuanbao1ORCID,Nguyen Hannah34ORCID,Kang Alex34ORCID,Bera Asim K.34,King Neil P.34ORCID,Voets Ilja K.2ORCID,de Vries Renko1

Affiliation:

1. Department of Physical Chemistry and Soft Matter, Wageningen University and Research, Wageningen, WE 6708, The Netherlands

2. Laboratory of Self-Organizing Soft Matter, Department of Chemical Engineering and Chemistry and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, MB 5600, The Netherlands

3. Department of Biochemistry, University of Washington, Seattle, WA 98195

4. Institute for Protein Design, University of Washington, Seattle, WA 98195

Abstract

Attaining molecular-level control over solidification processes is a crucial aspect of materials science. To control ice formation, organisms have evolved bewildering arrays of ice-binding proteins (IBPs), but these have poorly understood structure–activity relationships. We propose that reverse engineering using de novo computational protein design can shed light on structure–activity relationships of IBPs. We hypothesized that the model alpha-helical winter flounder antifreeze protein uses an unusual undertwisting of its alpha-helix to align its putative ice-binding threonine residues in exactly the same direction. We test this hypothesis by designing a series of straight three-helix bundles with an ice-binding helix projecting threonines and two supporting helices constraining the twist of the ice-binding helix. Our findings show that ice-recrystallization inhibition by the designed proteins increases with the degree of designed undertwisting, thus validating our hypothesis, and opening up avenues for the computational design of IBPs.

Funder

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

EC | European Research Council

HHS | NIH | National Institute of General Medical Sciences

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3