In situ FRET-based localization of the N terminus of myosin binding protein-C in heart muscle cells

Author:

Chandler Jessica1,Treacy Conor2ORCID,Ameer-Beg Simon2,Ehler Elisabeth3,Irving Malcolm1ORCID,Kampourakis Thomas1ORCID

Affiliation:

1. Randall Centre for Cell and Molecular Biophysics, and British Heart Foundation Centre of Research Excellence, King’s College London, London SE1 1UL, United Kingdom

2. Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King’s College London, London SE1 1UL, United Kingdom

3. School of Cardiovascular and Metabolic Medicine and Sciences, British Heart Foundation Centre of Research Excellence King's College London, London SE1 1UL, United Kingdom

Abstract

Cardiac myosin binding protein-C (cMyBP-C) is a thick filament–associated regulatory protein frequently found mutated in patients suffering from hypertrophic cardiomyopathy (HCM). Recent in vitro experiments have highlighted the functional significance of its N-terminal region (NcMyBP-C) for heart muscle contraction, reporting regulatory interactions with both thick and thin filaments. To better understand the interactions of cMyBP-C in its native sarcomere environment, in situ Foerster resonance energy transfer–fluorescence lifetime imaging (FRET–FLIM) assays were developed to determine the spatial relationship between the NcMyBP-C and the thick and thin filaments in isolated neonatal rat cardiomyocytes (NRCs). In vitro studies showed that ligation of genetically encoded fluorophores to NcMyBP-C had no or little effect on its binding to thick and thin filament proteins. Using this assay, FRET between mTFP conjugated to NcMyBP-C and Phalloidin-iFluor 514 labeling the actin filaments in NRCs was detected by time-domain FLIM. The measured FRET efficiencies were intermediate between those observed when the donor was attached to the cardiac myosin regulatory light chain in the thick filaments and troponin T in the thin filaments. These results are consistent with the coexistence of multiple conformations of cMyBP-C, some with their N-terminal domains binding to the thin filament and others binding to the thick filament, supporting the hypothesis that the dynamic interchange between these conformations mediates interfilament signaling in the regulation of contractility. Moreover, stimulation of NRCs with β-adrenergic agonists reduces FRET between NcMyBP-C and actin-bound Phalloidin, suggesting that cMyBP-C phosphorylation reduces its interaction with the thin filament.

Funder

British Heart Foundation

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3