The spontaneous symmetry breaking in Ta 2 NiSe 5 is structural in nature

Author:

Baldini Edoardo1ORCID,Zong Alfred1ORCID,Choi Dongsung2,Lee Changmin1,Michael Marios H.3,Windgaetter Lukas4,Mazin Igor I.5ORCID,Latini Simone4,Azoury Doron1,Lv Baiqing1,Kogar Anshul1,Su Yifan1,Wang Yao6,Lu Yangfan7,Takayama Tomohiro78,Takagi Hidenori78,Millis Andrew J.910,Rubio Angel41011ORCID,Demler Eugene3,Gedik Nuh1

Affiliation:

1. Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139

2. Department of Electrical Engineering & Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139

3. Department of Physics, Harvard University, Cambridge, MA 02138

4. Max Planck Institute for the Structure and Dynamics of Matter, Hamburg 22761, Germany

5. Department of Physics and Astronomy and Center for Quantum Materials, George Mason University, Fairfax, VA 22030

6. Department of Physics and Astronomy, Clemson University, Clemson, SC 29631

7. Department of Physics, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan

8. Max Planck Institute for Solid State Research, Stuttgart 70569, Germany

9. Department of Physics, Columbia University, New York, NY 10027

10. Center for Computational Quantum Physics, The Flatiron Institute, New York, NY 10010

11. Nano-Bio Spectroscopy Group, Departamento de Física de Materiales, Universidad del País Vasco, San Sebastían 20018, Spain

Abstract

The excitonic insulator is an electronically driven phase of matter that emerges upon the spontaneous formation and Bose condensation of excitons. Detecting this exotic order in candidate materials is a subject of paramount importance, as the size of the excitonic gap in the band structure establishes the potential of this collective state for superfluid energy transport. However, the identification of this phase in real solids is hindered by the coexistence of a structural order parameter with the same symmetry as the excitonic order. Only a few materials are currently believed to host a dominant excitonic phase, Ta 2 NiSe 5 being the most promising. Here, we test this scenario by using an ultrashort laser pulse to quench the broken-symmetry phase of this transition metal chalcogenide. Tracking the dynamics of the material’s electronic and crystal structure after light excitation reveals spectroscopic fingerprints that are compatible only with a primary order parameter of phononic nature. We rationalize our findings through state-of-the-art calculations, confirming that the structural order accounts for most of the gap opening. Our results suggest that the spontaneous symmetry breaking in Ta 2 NiSe 5 is mostly of structural character, hampering the possibility to realize quasi-dissipationless energy transport.

Funder

US | DARPA | Defense Sciences Office, DARPA

US | USA | CCDC | Army Research Office

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3