Gas-phase microactuation using kinetically controlled surface states of ultrathin catalytic sheets

Author:

Bao Nanqi1ORCID,Liu Qingkun2ORCID,Reynolds Michael F.2ORCID,Figueras Marc3ORCID,Smith Evangelos3ORCID,Wang Wei24,Cao Michael C.5ORCID,Muller David A.56,Mavrikakis Manos3ORCID,Cohen Itai26ORCID,McEuen Paul L.26ORCID,Abbott Nicholas L.1ORCID

Affiliation:

1. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853

2. Laboratory of Atomic and Solid-State Physics, Cornell University, Ithaca, NY 14853

3. Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706

4. Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853

5. School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853

6. Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14853

Abstract

Biological systems convert chemical energy into mechanical work by using protein catalysts that assume kinetically controlled conformational states. Synthetic chemomechanical systems using chemical catalysis have been reported, but they are slow, require high temperatures to operate, or indirectly perform work by harnessing reaction products in liquids (e.g., heat or protons). Here, we introduce a bioinspired chemical strategy for gas-phase chemomechanical transduction that sequences the elementary steps of catalytic reactions on ultrathin (<10 nm) platinum sheets to generate surface stresses that directly drive microactuation (bending radii of 700 nm) at ambient conditions (T = 20 °C; P total = 1 atm). When fueled by hydrogen gas and either oxygen or ozone gas, we show how kinetically controlled surface states of the catalyst can be exploited to achieve fast actuation (600 ms/cycle) at 20 °C. We also show that the approach can integrate photochemically controlled reactions and can be used to drive the reconfiguration of microhinges and complex origami- and kirigami-based microstructures.

Funder

National Science Foundation

US | USA | CCDC | Army Research Office

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3