Engineered gut symbiont inhibits microsporidian parasite and improves honey bee survival

Author:

Huang Qiang12ORCID,Lariviere Patrick J.13,Powell J. Elijah1ORCID,Moran Nancy A.1ORCID

Affiliation:

1. Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712

2. Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China

3. Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712

Abstract

Honey bees ( Apis mellifera ) are critical agricultural pollinators as well as model organisms for research on development, behavior, memory, and learning. The parasite Nosema ceranae , a common cause of honey bee colony collapse, has developed resistance to small-molecule therapeutics. An alternative long-term strategy to combat Nosema infection is therefore urgently needed, with synthetic biology offering a potential solution. Honey bees harbor specialized bacterial gut symbionts that are transmitted within hives. Previously, these have been engineered to inhibit ectoparasitic mites by expressing double-stranded RNA (dsRNA) targeting essential mite genes, via activation of the mite RNA interference (RNAi) pathway. In this study, we engineered a honey bee gut symbiont to express dsRNA targeting essential genes of N. ceranae via the parasite’s own RNAi machinery. The engineered symbiont sharply reduced Nosema proliferation and improved bee survival following the parasite challenge. This protection was observed in both newly emerged and older forager bees. Furthermore, engineered symbionts were transmitted among cohoused bees, suggesting that introducing engineered symbionts to hives could result in colony-level protection.

Funder

HHS | NIH | National Institute of General Medical Sciences

MOST | National Natural Science Foundation of China

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3