Proximity to criticality predicts surface properties of biomolecular condensates

Author:

Pyo Andrew G. T.1,Zhang Yaojun1234ORCID,Wingreen Ned S.45ORCID

Affiliation:

1. Department of Physics, Princeton University, Princeton, NJ 08544

2. Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218

3. Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218

4. Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544

5. Department of Molecular Biology, Princeton University, Princeton, NJ 08544

Abstract

It has recently become appreciated that cells self-organize their interiors through the formation of biomolecular condensates. These condensates, typically formed through liquid–liquid phase separation of proteins, nucleic acids, and other biopolymers, exhibit reversible assembly/disassembly in response to changing conditions. Condensates play many functional roles, aiding in biochemical reactions, signal transduction, and sequestration of certain components. Ultimately, these functions depend on the physical properties of condensates, which are encoded in the microscopic features of the constituent biomolecules. In general, the mapping from microscopic features to macroscopic properties is complex, but it is known that near a critical point, macroscopic properties follow power laws with only a small number of parameters, making it easier to identify underlying principles. How far does this critical region extend for biomolecular condensates and what principles govern condensate properties in the critical regime? Using coarse-grained molecular-dynamics simulations of a representative class of biomolecular condensates, we found that the critical regime can be wide enough to cover the full physiological range of temperatures. Within this critical regime, we identified that polymer sequence influences surface tension predominately via shifting the critical temperature. Finally, we show that condensate surface tension over a wide range of temperatures can be calculated from the critical temperature and a single measurement of the interface width.

Funder

National Science Foundation

HHS | NIH | National Institute of General Medical Sciences

Gouvernement du Canada | Natural Sciences and Engineering Research Council of Canada

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3