Automating hybrid collective intelligence in open-ended medical diagnostics

Author:

Kurvers Ralf H. J. M.12ORCID,Nuzzolese Andrea Giovanni3ORCID,Russo Alessandro3ORCID,Barabucci Gioele4ORCID,Herzog Stefan M.1ORCID,Trianni Vito3ORCID

Affiliation:

1. Center for Adaptive Rationality, Max Planck Institute for Human Development, Berlin 14191, Germany

2. Science of Intelligence, Research Cluster of Excellence, Berlin 10587, Germany

3. Semantic Technology Laboratory & Collective Intelligence in Natural and Artificial Systems Laboratory, Institute of Cognitive Sciences and Technologies, National Research Council, Rome 00185, Italy

4. Norwegian University of Science and Technology, Trondheim 7034, Norway

Abstract

Collective intelligence has emerged as a powerful mechanism to boost decision accuracy across many domains, such as geopolitical forecasting, investment, and medical diagnostics. However, collective intelligence has been mostly applied to relatively simple decision tasks (e.g., binary classifications). Applications in more open-ended tasks with a much larger problem space, such as emergency management or general medical diagnostics, are largely lacking, due to the challenge of integrating unstandardized inputs from different crowd members. Here, we present a fully automated approach for harnessing collective intelligence in the domain of general medical diagnostics. Our approach leverages semantic knowledge graphs, natural language processing, and the SNOMED CT medical ontology to overcome a major hurdle to collective intelligence in open-ended medical diagnostics, namely to identify the intended diagnosis from unstructured text. We tested our method on 1,333 medical cases diagnosed on a medical crowdsourcing platform: The Human Diagnosis Project. Each case was independently rated by ten diagnosticians. Comparing the diagnostic accuracy of single diagnosticians with the collective diagnosis of differently sized groups, we find that our method substantially increases diagnostic accuracy: While single diagnosticians achieved 46% accuracy, pooling the decisions of ten diagnosticians increased this to 76%. Improvements occurred across medical specialties, chief complaints, and diagnosticians’ tenure levels. Our results show the life-saving potential of tapping into the collective intelligence of the global medical community to reduce diagnostic errors and increase patient safety.

Funder

National Endowment for Science Technology and the Arts

EC | Horizon Europe | HORIZON EUROPE Excellent Science

Deutsche Forschungsgemeinschaft

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3