Identifying outbreaks in sewer networks: An adaptive sampling scheme under network’s uncertainty

Author:

Baboun José1ORCID,Beaudry Isabelle S.2,Castro Luis M.3ORCID,Gutierrez Felipe4ORCID,Jara Alejandro3ORCID,Rubio Benjamin1,Verschae José1ORCID

Affiliation:

1. Facultad de Matemáticas y Facultad de Ingeniería, Institute for Mathematical and Computational Engineering, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile

2. Mount Holyoke College, Department of Mathematics and Statistics, South Hadley, MA 01075

3. Department of Statistics, and MiDaS - Center for the Discovery of Structures in Complex Data, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile

4. Department of Computer Sciences, and MiDaS - Center for the Discovery of Structures in Complex Data, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile

Abstract

Motivated by the implementation of a SARS-Cov-2 sewer surveillance system in Chile during the COVID-19 pandemic, we propose a set of mathematical and algorithmic tools that aim to identify the location of an outbreak under uncertainty in the network structure. Given an upper bound on the number of samples we can take on any given day, our framework allows us to detect an unknown infected node by adaptively sampling different network nodes on different days. Crucially, despite the uncertainty of the network, the method allows univocal detection of the infected node, albeit at an extra cost in time. This framework relies on a specific and well-chosen strategy that defines new nodes to test sequentially, with a heuristic that balances the granularity of the information obtained from the samples. We extensively tested our model in real and synthetic networks, showing that the uncertainty of the underlying graph only incurs a limited increase in the number of iterations, indicating that the methodology is applicable in practice.

Funder

ANID Millennium Science Initiative Program

ANID | Fondo Nacional de Desarrollo Científico y Tecnológico

Publisher

Proceedings of the National Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3