Toward vanishing droplet friction on repellent surfaces

Author:

Backholm Matilda12ORCID,Kärki Tytti12ORCID,Nurmi Heikki A.12ORCID,Vuckovac Maja12,Turkki Valtteri12ORCID,Lepikko Sakari12,Jokinen Ville3,Quéré David4ORCID,Timonen Jaakko V. I.12ORCID,Ras Robin H. A.12ORCID

Affiliation:

1. Department of Applied Physics, Aalto University, Espoo 02150, Finland

2. Centre of Excellence in Life-Inspired Hybrid Materials, Aalto University, Espoo 02150, Finland

3. Department of Chemistry and Materials Science, Aalto University, Espoo 02150, Finland

4. Physique et Mécanique des Milieux Hétérogènes, UMR 7636 du CNRS, Paris Sciences Lettres Research University, Ecole Supérieure de Physique et Chimie Industrielles, Paris 75005, France

Abstract

Superhydrophobic surfaces are often seen as frictionless materials, on which water is highly mobile. Understanding the nature of friction for such water-repellent systems is central to further minimize resistance to motion and energy loss in applications. For slowly moving drops, contact-line friction has been generally considered dominant on slippery superhydrophobic surfaces. Here, we show that this general rule applies only at very low speed. Using a micropipette force sensor in an oscillating mode, we measure the friction of water drops approaching or even equaling zero contact-line friction. We evidence that dissipation then mainly stems from the viscous shearing of the air film (plastron) trapped under the liquid. Because this force is velocity dependent, it can become a serious drag on surfaces that look highly slippery from quasi-static tests. The plastron thickness is found to be the key parameter that enables the control of this special friction, which is useful information for designing the next generation of ultraslippery water-repellent coatings.

Funder

Research Council of Finland

EC | ERC | HORIZON EUROPE European Research Council

Publisher

Proceedings of the National Academy of Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3