Ultrafast generation of hidden phases via energy-tuned electronic photoexcitation in magnetite

Author:

Truc B.1ORCID,Usai P.1,Pennacchio F.1,Berruto G.1,Claude R.1ORCID,Madan I.1ORCID,Sala V.2,LaGrange T.1,Vanacore G. M.13ORCID,Benhabib S.14,Carbone F.1ORCID

Affiliation:

1. School of Basic Sciences, Institute of Physics, Laboratory for Ultrafast Microscopy and Electron Scattering, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland

2. Dipartimento di Fisica, Politecnico di Milano, Milano 20133, Italy

3. Department of Materials Science, Laboratory of Ultrafast Microscopy for Nanoscale Dynamics, University of Milano-Bicocca, Milan 20125, Italy

4. Centre national de la recherche scientifique, Laboratoire de Physique des Solides, Université Paris-Saclay, Orsay 91405, France

Abstract

Phase transitions occurring in nonequilibrium conditions can evolve through high-energy intermediate states inaccessible via equilibrium adiabatic conditions. Because of the subtle nature of such hidden phases, their direct observation is extremely challenging and requires simultaneous visualization of matter at subpicoseconds and subpicometer scales. Here, we show that a magnetite crystal in the vicinity of its metal-to-insulator transition evolves through different hidden states when controlled via energy-tuned ultrashort laser pulses. By directly monitoring magnetite’s crystal structure with ultrafast electron diffraction, we found that upon near-infrared (800 nm) excitation, the trimeron charge/orbital ordering pattern is destroyed in favor of a phase-separated state made of cubic-metallic and monoclinic-insulating regions. On the contrary, visible light (400 nm) activates a photodoping charge transfer process that further promotes the long-range order of the trimerons by stabilizing the charge density wave fluctuations, leading to the reinforcement of the monoclinic insulating phase. Our results demonstrate that magnetite’s structure can evolve through completely different metastable hidden phases that can be reached long after the initial excitation has relaxed, breaking ground for a protocol to control emergent properties of matter.

Funder

EC | ERC | HORIZON EUROPE European Research Council

SNSF

NCCR-MUST

Publisher

Proceedings of the National Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3