History constrains the evolution of efficient color naming, enabling historical inference

Author:

Twomey Colin R.12ORCID,Brainard David H.3ORCID,Plotkin Joshua B.2ORCID

Affiliation:

1. Data Driven Discovery Initiative, University of Pennsylvania, Philadelphia, PA 19104

2. Department of Biology, University of Pennsylvania, Philadelphia, PA 19104

3. Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104

Abstract

Color naming in natural languages is not arbitrary: It reflects efficient partitions of perceptual color space [T. Regier, P. Kay, N. Khetarpal, Proc. Natl. Acad. Sci. U.S.A. 104 , 1436–1441 (2007)] modulated by the relative needs to communicate about different colors [C. Twomey, G. Roberts, D. Brainard, J. Plotkin, Proc. Natl. Acad. Sci. U.S.A. 118 , e2109237118 (2021)]. These psychophysical and communicative constraints help explain why languages around the world have remarkably similar, but not identical, mappings of colors to color terms. Languages converge on a small set of efficient representations.But languages also evolve, and the number of terms in a color vocabulary may change over time. Here we show that history, i.e. the existence of an antecedent color vocabulary, acts as a nonadaptive constraint that biases the choice of efficient solution as a language transitions from a vocabulary of size n to n + 1 terms. Moreover, as efficient vocabularies evolve to include more terms they explore a smaller fraction of all possible efficient vocabularies compared to equally sized vocabularies constructed de novo. This path dependence of the cultural evolution of color naming presents an opportunity. Historical constraints can be used to reconstruct ancestral color vocabularies, allowing us to answer long-standing questions about the evolutionary sequences of color words, and enabling us to draw inferences from phylogenetic patterns of language change.

Funder

John Templeton Foundation

Publisher

Proceedings of the National Academy of Sciences

Reference59 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3