On the different regimes of stochastic gradient descent

Author:

Sclocchi Antonio1ORCID,Wyart Matthieu1

Affiliation:

1. Institute of Physics, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland

Abstract

Modern deep networks are trained with stochastic gradient descent (SGD) whose key hyperparameters are the number of data considered at each step or batch size B , and the step size or learning rate η . For small B and large η , SGD corresponds to a stochastic evolution of the parameters, whose noise amplitude is governed by the “temperature” T η / B . Yet this description is observed to break down for sufficiently large batches B B , or simplifies to gradient descent (GD) when the temperature is sufficiently small. Understanding where these cross-overs take place remains a central challenge. Here, we resolve these questions for a teacher-student perceptron classification model and show empirically that our key predictions still apply to deep networks. Specifically, we obtain a phase diagram in the B - η plane that separates three dynamical phases: i) a noise-dominated SGD governed by temperature, ii) a large-first-step-dominated SGD and iii) GD. These different phases also correspond to different regimes of generalization error. Remarkably, our analysis reveals that the batch size B separating regimes (i) and (ii) scale with the size P of the training set, with an exponent that characterizes the hardness of the classification problem.

Funder

Simons Foundation

Publisher

Proceedings of the National Academy of Sciences

Reference59 articles.

1. A Stochastic Approximation Method

2. Y. LeCun, L. Bottou, G. B. Orr, K. R. Müller, Efficient Backprop in Neural Networks: Tricks of the Trade (Springer, 2002), pp. 9–50.

3. L. Bottou “Large-scale machine learning with stochastic gradient descent” in Proceedings of COMPSTAT 2010: 19th International Conference on Computational Statistics Paris France August 22–27 2010 Keynote Invited and Contributed Papers (Springer 2010) pp. 177–186.

4. S. Jastrzebski et al. Three factors influencing minima in SGD. arXiv [Preprint] (2017). http://arxiv.org/abs/1711.04623 (Accessed 8 November 2022).

5. Measuring the effects of data parallelism on neural network training;Shallue C. J.;J. Mach. Learn. Res.,2019

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3