Sensitivity of ocean circulation to warming during the Early Eocene greenhouse

Author:

Kirtland Turner Sandra1ORCID,Ridgwell Andy1ORCID,Keller Allison L.1,Vahlenkamp Maximilian2,Aleksinski Adam K.13,Sexton Philip F.4ORCID,Penman Donald E.5ORCID,Hull Pincelli M.6ORCID,Norris Richard D.7ORCID

Affiliation:

1. Department of Earth and Planetary Sciences, University of California, Riverside, CA 92521

2. Center for Marine Environmental Sciences (MARUM), University of Bremen, Bremen 28359, Germany

3. Department of Earth, Atmospheric and Planetary Sciences, Purdue University, West Lafayette, IN 47906

4. School of Environment, Earth and Ecosystem Sciences, The Open University, Milton Keynes MK7 6AA, United Kingdom

5. Department of Geosciences, Utah State University, Logan, UT 84322

6. Department of Earth and Planetary Sciences, Yale University, New Haven, CT 06511

7. Center for Marine Biodiversity and Conservation, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093

Abstract

Multiple abrupt warming events (“hyperthermals”) punctuated the Early Eocene and were associated with deep-sea temperature increases of 2 to 4 °C, seafloor carbonate dissolution, and negative carbon isotope (δ 13 C) excursions. Whether hyperthermals were associated with changes in the global ocean overturning circulation is important for understanding their driving mechanisms and feedbacks and for gaining insight into the circulation’s sensitivity to climatic warming. Here, we present high-resolution benthic foraminiferal stable isotope records (δ 13 C and δ 18 O) throughout the Early Eocene Climate Optimum (~53.26 to 49.14 Ma) from the deep equatorial and North Atlantic. Combined with existing records from the South Atlantic and Pacific, these indicate consistently amplified δ 13 C excursion sizes during hyperthermals in the deep equatorial Atlantic. We compare these observations with results from an intermediate complexity Earth system model to demonstrate that this spatial pattern of δ 13 C excursion size is a predictable consequence of global warming-induced changes in ocean overturning circulation. In our model, transient warming drives the weakening of Southern Ocean-sourced overturning circulation, strengthens Atlantic meridional water mass aging gradients, and amplifies the magnitude of negative δ 13 C excursions in the equatorial to North Atlantic. Based on model-data consistency, we conclude that Eocene hyperthermals coincided with repeated weakening of the global overturning circulation. Not accounting for ocean circulation impacts on δ 13 C excursions will lead to incorrect estimates of the magnitude of carbon release driving hyperthermals. Our finding of weakening overturning in response to past transient climatic warming is consistent with predictions of declining Atlantic Ocean overturning strength in our warm future.

Funder

National Science Foundation

Publisher

Proceedings of the National Academy of Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3