NOVA1 acts as an oncogenic RNA-binding protein to regulate cholesterol homeostasis in human glioblastoma cells

Author:

Saito Yuhki12,Yang Yanhong34,Saito Misa12,Park Christopher Y.12,Funato Kosuke34,Tabar Viviane34,Darnell Robert B.12ORCID

Affiliation:

1. HHMI, The Rockefeller University, New York, NY 10065

2. Laboratory of Molecular Neuro-oncology, The Rockefeller University, New York, NY 10065

3. Department of Neurosurgery, Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065

4. Cancer Biology and Genetics, Sloan Kettering Institute, New York, NY 10065

Abstract

NOVA1 is a neuronal RNA-binding protein identified as the target antigen of a rare autoimmune disorder associated with cancer and neurological symptoms, termed paraneoplastic opsoclonus-myoclonus ataxia. Despite the strong association between NOVA1 and cancer, it has been unclear how NOVA1 function might contribute to cancer biology. In this study, we find that NOVA1 acts as an oncogenic factor in a GBM (glioblastoma multiforme) cell line established from a patient. Interestingly, NOVA1 and Argonaute (AGO) CLIP identified common 3′ untranslated region (UTR) targets, which were down-regulated in NOVA1 knockdown GBM cells, indicating a transcriptome-wide intersection of NOVA1 and AGO–microRNA (miRNA) targets regulation. NOVA1 binding to 3′UTR targets stabilized transcripts including those encoding cholesterol homeostasis related proteins. Selective inhibition of NOVA1–RNA interactions with antisense oligonucleotides disrupted GBM cancer cell fitness. The precision of our GBM CLIP studies point to both mechanism and precise RNA sequence sites to selectively inhibit oncogenic NOVA1–RNA interactions. Taken together, we find that NOVA1 is commonly overexpressed in GBM, where it can antagonize AGO2–miRNA actions and consequently up-regulates cholesterol synthesis, promoting cell viability.

Funder

HHS | NIH | National Institute of Neurological Disorders and Stroke

Starr Foundation

Howard Hughes Medical Institute

Publisher

Proceedings of the National Academy of Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3